
Go from model to production in minutes

eBook

How to Deploy
Your Machine
Learning Models
(The Easy Way)

Free
eBook

Download now

OVERVIEW
APIs and web applications are common methods of
productionizing machine learning work. They allow users to
supply inputs and swiftly receive inference results from your
trained model, no matter where they are. In an API,
programmatic calls can be used to retrieve JSON output,
while web applications are more friendly to the business user
and return attractive HTML output.

Training machine learning models is a core component of
modern business. But taking those machine learning models
and creating systems so that they continuously run, can
often be an afterthought. These models can be deployed as
dashboards for business stakeholders or APIs for engineers
to call.

Saturn Cloud is designed to give data scientists what they
need to be productive and generate value from machine
learning. In this guide, we'll show you step-by-step, how to
implement these two accessible techniques for
productionizing models, and give you all the tools you need
to make machine learning add value to your team and
stakeholders.

1

How to Deploy Your Machine Learning Models

The Model
Part 1

2

How to Deploy Your Machine Learning Models

Data science model deployment can
sound intimidating if you've never had a
chance to try it in a safe space. Do you
want to make a REST API, or a full
frontend app? What does it take to do
either of these? It’s not as hard as you
might think.

In this part, you'll learn how you can take
a model and deploy it to a web app or a
REST API (using Saturn Cloud), so that
others can interact with it.

In this tool, we’ll let the user make some
feature selections, and then the model
will predict an outcome for them. But
using this same idea, you could easily do
other things, such as letting the user
retrain the model, upload things like
images, or conduct other interactions
with your model.

Just to be interesting, we’re going to do
this same project with two frameworks,
Voilà and Flask, so you can see how they
both work and decide what’s right for
your needs. In Flask, we’ll create both a
REST API and a web app version.

Our Toolkit

3

 codebook for the dataset
 plotly.js cheat sheet
 Jinja (helpful for Flask)

Other Helpful Links

 Saturn Cloud
 Flask
 Plotly (python and JS)
 Scikit-learn (for our model)

How to Deploy Your Machine Learning Models

https://collegescorecard.ed.gov/assets/FieldOfStudyDataDocumentation.pdf
https://images.plot.ly/plotly-documentation/images/plotly_js_cheat_sheet.pdf?_ga=2.249711556.332176051.1622039680-1660549259.1622039680
https://jinja.palletsprojects.com/en/3.0.x/
https://saturncloud.io/?utm_source=Deploy%20ML%20model%20eBook
https://flask.palletsprojects.com/en/2.0.x/
https://plotly.com/
https://scikit-learn.org/stable/index.html

The Project

The first steps of our process are exactly the same, whether we are going for Voila
or Flask. We need to get some data and build a model. We're taking the US
Department of Education’s College Scorecard data, and building a quick linear
regression model that accepts a few inputs and predicts a student’s likely earnings
2 years after graduation. (You can get this data yourself here)

About Measurements
According to the data codebook: “The cohort of evaluated graduates for
earnings metrics consists of those individuals who received federal
financial aid, but excludes those who were subsequently enrolled in
school during the measurement year, died prior to the end of the
measurement year, received a higher-level credential than the
credential level of the field of study measured, or did not work during
the measurement year.”

For the GitHub Gist, click here.

4

How to Deploy Your Machine Learning Models

https://collegescorecard.ed.gov/data/
https://gist.github.com/skirmer/ff24c86d95a84b64a6dd1a747a3c6295

Load Data

I already did some data cleaning and uploaded the features I wanted to a public
bucket on S3, for easy access. This way, I can load it quickly when the app is run.

Format for Training

Once we have the dataset, this is going to give us a handful of features and our
outcome. We just need to split it between features and target with scikit-learn to
be ready to model. (Note that all of these functions will be run exactly as written
in each of our apps.)

For the GitHub Gist, click here.

For the GitHub Gist, click here.

5

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/5cb171d63503482809653566b823899b
https://gist.github.com/skirmer/1548cb5277cab90a70e258c8386d71c3

 REGION: Geographic location of college
 LOCALE: Type of city or town the college is in
 CONTROL: Type of college (public/private/for-profit)
 CIPDESC_new: Major field of study (CIP code)
 CREDDESC: Credential (Bachelor, Master, etc)
 ADM_RATE_ALL: Admission rate
 SAT_AVG_ALL: Average SAT score for admitted students (proxy for college
prestige)
 tuition: Cost to attend the institution for one year

Our features are:

Our target outcome is EARN_MDN_HI_2YR: median earnings measured two
years after completion of degree

We are going to use scikit-learn’s pipeline to make our feature engineering as
easy and quick as possible. We’re going to return a trained model as well as the
R-squared value for the test sample, so we have a quick and straightforward
measure of the model’s performance on the test set that we can return along
with the model object.

Train Model

For the GitHub Gist, click here.

Now we have a model, and we’re ready to put together the app. All these functions
will be run when the app runs because it’s so fast that it doesn’t make sense to
save out a model object to be loaded. If your model doesn’t train this fast, save
your model object and return it in your app when you need to predict.

6

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/72961012063b1c75e6b61ebcd83c0b08

Visualization

In addition to building a model and creating predictions, we want our app to show a
visual of the prediction against a relevant distribution. The same plot function can be
used for both apps, because we are using Plotly for the job.

The function below accepts the type of degree and the major, to generate the
distributions, as well as the prediction that the model has given. That way, the viewer
can see how their prediction compares to others. Later, we’ll see how the different
app frameworks use the Plotly object.

For the GitHub Gist, click here.

7

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/7cf35b101260cdcc8cdf975fc33bf941

You might be wondering whether your other favorite visualization library could work
here — the answer is, maybe. Every Python viz library has idiosyncrasies and is not
likely to be supported exactly the same for Voila and Flask. I chose Plotly because it
has interactivity and is fully functional in both frameworks, but you are welcome to
try your own visualization tool and see how it goes.

Deployment

Now, you’re ready to move on to deploying the model. In Part 2, you’ll learn to do it
with Voila, and in Part 3, you’ll learn the process with Flask.

8

This is the general visual we’ll be generating — but because it’s Plotly, it’ll be
interactive!

How to Deploy Your Machine Learning Models

9

Voilà Web Application
Part 2

How to Deploy Your Machine Learning Models

In this part, we'll learn to build a fully
functional web application just using a
Jupyter notebook through the
functionality of Voilà. Developed by the
Project Jupyter community, this library
allows users to share results and
application functionality without the
frontend expertise many other tools
require.

The usefulness of Voilà is certainly not
limited to machine learning models,
but it happens to be a very convenient
tool for deploying models without a
steep learning curve.

When might you want to use this kind
of application? One example might be
when your audience needs to use your
model in a self-service manner but
doesn't have detailed technical
expertise. By setting up a Voilà web
application, you can just give your
users the URL and they can be self-
sufficient. This frees up data scientists'
time for other work and ensures the
business stakeholders get the insights
they need fast.

Our Toolkit

See it in Action!

If you have a Saturn Cloud
account, you can see this
application running live now.

Since you created the model in Part 1
of this series, you have everything
you need to produce a deployment.
Read on to learn how.

10

 ipywidgets (helpful for Voila)
 codebook for the dataset
 plotly.js cheat sheet

Other Helpful Links

 Saturn Cloud
 Voila
 Plotly (python and JS)
 Scikit-learn (for our model)

How to Deploy Your Machine Learning Models

https://blog.jupyter.org/and-voil%C3%A0-f6a2c08a4a93
https://saturncloud.io/docs/getting-started/signing_up/
https://app.community.saturnenterprise.io/auth/login?next=https%3A%2F%2Fvoila-webapp-deploy.community.saturnenterprise.io%2F
https://ipywidgets.readthedocs.io/en/stable/
https://collegescorecard.ed.gov/assets/FieldOfStudyDataDocumentation.pdf
https://images.plot.ly/plotly-documentation/images/plotly_js_cheat_sheet.pdf?_ga=2.249711556.332176051.1622039680-1660549259.1622039680
https://saturncloud.io/?utm_source=Deploy%20ML%20model%20eBook
https://voila.readthedocs.io/en/stable/index.html
https://plotly.com/
https://scikit-learn.org/stable/index.html

Voila

Now, we are ready to start building our Voila app. Voila is entirely contained in a
Jupyter notebook, so you’ll need to start a new notebook, and add in all the functions
we wrote up above. You don’t need any other file types or frameworks, you can do it
all in one Jupyter notebook. You can go ahead and add a chunk with calls for the
modeling functions, so we are ready with our data.

df = load_data()
X, y = split_data(df)
modobj, modscore = trainmodel(X, y)

With this, we have our raw data, our model object, and the R-squared value.

Next, we start building the widgets — this is how your viewer will make selections to
populate the prediction. In one or more chunks, add a widget for every input the
user might want to make — here’s one example. These can reference the items
you’ve created already in the notebook — as we did here, that might mean using data
from the dataset to populate a selector. (Sort this the way you want it to appear,
because the widget is not going to reorder the list.)

For the GitHub Gist, click here.

11

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/e40ac31645cd20d90e0fcc05f00bf7ae

Create Rendering Functions

The next task is to put all this together with functions that listen for user inputs,
and complete a task — for us, this is predicting the earning value.

You can write one or many of these functions, but the key is how you call them in
the interactive_output wrapper.

This function listens for all the input widgets, and when any of them change, it runs.
It accepts all the user inputs, and forms them into a dataframe that is shaped
correctly for the model object. It predicts on that dataframe, and then creates an
HTML chunk using f-strings. Then it calls our plotting function, described earlier. It
displays the HTML and the plot together, and this is what we’ll see on the app.HTML and the plot together, and this is what we ll see on th

For the GitHub Gist, click here.

12

When you have all your widgets created and the app runs, your input selectors will
look something like this.

interactive_output

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/f862ec791de9c6308d97571fad7046a1

However, recall that I mentioned we need to call it an interactive_outp . If we don’t,
Voila doesn’t know we mean for this to listen for inputs and run. But this is a simple
task, just one call, as shown here. It calls the function and also passes a dict
containing the arguments as keys and the widget names as values.

Page Layout

To do our layout, I’m using the Grid elements of Voila — but there are many ways
to arrange a Voila app that are not shown here. As you might guess, VBox means
vertical box and HBox means horizontal box, and those are the containers I’m
using.

My vertical box is called vb, and it holds all my widgets for the user to interact
with. My horizontal box, which will lay below this, is called h , and it contains the
 out2 interactive widget created earlier. “children” here just means the items that
go inside each box. You can manipulate some layout elements for these boxes
right here.

p y

arguments as keys and the widget names as values.

interactive_output

At this point, we’re ready to do our page layout. You can certainly add lots of other
design elements if you want to, and pass them as HTML or as other widgets.

vb

hb

out2

For the GitHub Gist, click here.

For the GitHub Gist, click here.

13

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/247158af73737c1477edf5602b6273ee
https://gist.github.com/skirmer/b4d361b4cca8bda4cfa156127b6ae6b3

The next thing I want to do is create my actual Grid. I’m making gb my grid, and it
contains the two objects vb and hb. The Grid spans 80% of the page width, and is
2x2 shaped. The columns are each half the size of the grid wide, and the grid
template is described. Grid styling can be hard, but there’s a great tutorial with
diagrams that can help.n help.

gb
vb hb

Now you’re ready to run your app. Run this chunk, and your app should appear right
in your notebook page!

display(gb)

That’s nice, but it’s not quite what we want our final product to be. To deploy this
notebook for other users to see is a simple task with Saturn Cloud.

For the GitHub Gist, click here.

14

How to Deploy Your Machine Learning Models

https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.html
https://gist.github.com/skirmer/8ff470ed7657b038e85c27357ba7b13d

Deploy

Make sure your code is in a Github repo you can access. Go to the Saturn Cloud
project of your choice, and connect that repo to your project. This is how your
deployment will find the code.

Then return to the Saturn Cloud UI, and open a project. Inside the project page, go
down to Deployments. You have the opportunity to customize a lot here, but the
most important piece is the command — this needs to use the host 0.0.0.0 and the
port 8000 to run on Saturn Cloud correctly. It’s the same command you might use
if running Voila locally on your laptop, just make sure the port and host are right.
The path to your code is likely to start ../git-repos/ and will then be followed with
the path to your file inside the repo you attached.

../git-repos/

For this project, there’s not much else you need to change, except that you should
ensure that inside the Extra Packages section you note that plotly is required.

Now, save your deployment and hit the green Start arrow. It’ll take a moment
to start, and then the URL of that deployment should display your interactive
app. Mine has a few extra text elements to explain the app, and you can write
this sort of thing in yours too.

15

How to Deploy Your Machine Learning Models

https://www.saturncloud.io/docs/using-saturn-cloud/gitrepo/
https://saturncloud.io/docs/getting-started/start_project/
https://saturncloud.io/docs/using-saturn-cloud/jobs_and_deployments/

Conclusion

Congratulations - you deployed a model! This technique can work for lots of different
types of models, and if you’d like to try it on Saturn Cloud, you can do so here.

In Part 3, you’ll learn the process of deploying your model as either a web application
or a REST API with Flask.

See it in Action!

If you have a Saturn Cloud
account, you can see this
application running live now.

16

How to Deploy Your Machine Learning Models

https://saturncloud.io/?utm_source=Deploy%20ML%20model%20eBook
https://saturncloud.io/docs/getting-started/signing_up/
https://app.community.saturnenterprise.io/auth/login?next=https%3A%2F%2Fvoila-webapp-deploy.community.saturnenterprise.io%2F

17

Flask API or
Web Application

Part 3

How to Deploy Your Machine Learning Models

Flask is a Python-based web
development framework with
tremendously powerful tools. It may be
a little more complicated to learn and
use for the average data scientist than
Voilà, but it offers more substantial
flexibility in design and functionality.

In this next part, we'll see how you can
employ Flask to serve a REST API or a
fully developed web application,
depending on your needs. Both start
with the same steps, but you get to
choose the presentation of the output
that is right for you - either easily
parsable JSON, or a full webpage.

The use case for a REST API will be
different from a web application, in
most cases. If your audience is
business users, for whom raw JSON
output might be off-putting or
confusing, an API is not the right
choice. However, in many cases your
model's output will be fed to a
database, another application, or
combined with other information
before its final use. In these cases, your
results should be programmatically
interpretable, and JSON is an excellent
format for that. So, when you need
your output to be parsed by
computers, rather than being read by
human users, choose an API!

 Saturn Cloud (so you can easily deploy)
 Flask
 Plotly (python and JS)
 Scikit-learn (for our model)

Our Toolkit

See it in Action!

If you have a Saturn Cloud
account, you can see the Flask
web application running live now,
or see the Flask REST API.

Since you created the model in Part 1
of this series, you have everything you
need to produce a deployment. Read
on to learn how.

18

Helpful Links

 codebook for the dataset
 Jinja (helpful for Flask)
 plotly.js cheat sheet

How to Deploy Your Machine Learning Models

https://saturncloud.io/?utm_source=Deploy%20ML%20model%20eBook
https://flask.palletsprojects.com/en/2.0.x/
https://plotly.com/
https://scikit-learn.org/stable/index.html
https://saturncloud.io/docs/getting-started/signing_up/
https://app.community.saturnenterprise.io/auth/login?next=https%3A%2F%2Fflask-webapp-deploy.community.saturnenterprise.io%2F
https://app.community.saturnenterprise.io/auth/login?next=https%3A%2F%2Fflask-demo-api-deploy.community.saturnenterprise.io%2F
https://collegescorecard.ed.gov/assets/FieldOfStudyDataDocumentation.pdf
https://jinja.palletsprojects.com/en/3.0.x/
https://images.plot.ly/plotly-documentation/images/plotly_js_cheat_sheet.pdf?_ga=2.249711556.332176051.1622039680-1660549259.1622039680

 A bare REST API
 A web app (displaying an interface like we made with Voila in Part 2)

Flask

To build a deployment in Flask, we’ll be using Python scripts instead of the Jupyter
notebooks that Voila uses. As a result, there’s more flexibility and possibility available
— especially if you start integrating additional frontend frameworks. For this project,
we have two choices about how to proceed:

If we choose the web app, we’ll be developing with Python, HTML, CSS, and some
Javascript. That might sound like a lot, but it’s less complex than it might seem at first.
In the case of the API, you can avoid a lot of the front-end design, but some is still
advisable to help your user get the hang of things.

Application

As with Voila, we want to take the functions we wrote and put them into a script —
instead of .ipynb , this will be just .py . The majority of our work can be contained in
this Python script, which we’ll call app.p. This holds all our code described above and
in Part 1, as well as some functions depending on what kind of endpoint we’re building.
I’m going to add one extra function as well, which wraps up all the work we did and
runs it together when called.when called.

Now, inside our script, we initialize Flask, call our model function, and get everything
set up.

app = Flask(__name__)
modobj, modscore, df = train_model()

.ipynb .py

app.py

For the GitHub Gist, click here.

19

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/0186364d185e032c643228d5a5fcbe90

Index

It’s probably nice to create a landing page for your users, whether they will be
using your application in browser or not, just so there’s somewhere to get
information and learn to use your tool. In the app.py script, we’ll have a function
that creates this landing page.

In this function, called index , our Flask application is instructed to render the
HTML- that’s pretty much all this function does. We also have a few pieces of data
in there to help the renderer make our value selectors correctly. (Abbreviated list
for space.) Notice this function has NO returns- that’s because its whole purpose is
to make the HTML, and that’s all.

So it’s generating some HTML — but how does it know what to do? We’ll make a
design template, and then fill in just the content we need to show the user.

What does the HTML template need to look like? It can start with the most basic
HTML page outline. Flask uses Jinja templating to populate variables and pass
information around, so you’ll see a lot of items enclosed in double curly braces
indicating Jinja variables. Also, note the section inside our body tags, because this
is where any pages we make will populate the information they contain.

For the GitHub Gist, click here.

20

index

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/3db01652437dfcba4cc2bc278928047b

Almost everything you do in the index page then can be standard HTML. My
selectors are enclosed in a form, and look like this. Notice that the credentials
selector has several Jinja variables- how did these get here? From app.py !

The index HTML page, as a result of the template, doesn’t need to repeat the
HTML wrappings at all. It can be as simple as some HTML description and the
fields we are asking the user to select. It does, however, need to be wrapped in the
following, so the templating system knows what to do.

{% extends "design.html" %} {% block content %}
 <! -- our index-specific HTML and form -->
{% endblock %}

Interactivity
If you want to make it possible for the user to submit options via the UI, then add a form
and selectors to this page — if you just want people to submit options via URL arguments,
you can skip this.

app.py

For the GitHub Gist, click here.

21

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/07f9eb9c8750c0ba1921ad01f3269deb

Add as many selectors as your work requires.

Results

Our next task is giving results back to the user. We can either return plain JSON as
a REST API (easier to pass to other applications), or a UI version (easier to
consume business users, for example). Whichever way we go, we need a function
in app.py that will create the results from the inputs, however. This stub will do
that for us. It loops over all our inputs, checks that they are present in the
arguments on the URL, and then runs our prediction from the model.

For the GitHub Gist, click here.

For the GitHub Gist, click here.

22

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/f919ef08be47242e557d9ca9c7101de8
https://gist.github.com/skirmer/d0f411873dadfcc7ae8b2c8bc046996a

And that’s that. When users visit our webpage, they’ll get to submit options, or
they can go directly to our URL and pass things programmatically. A JSON result
will be returned. (You can customize the @app.rout call to name it “api” or
something similar that works for you.)

UI Endpoint

If we need to present our results more attractively, we can make the output into a
result.html page. The template we already saw for index.htmcan work for this
too, so the HTML required is minimal. For fun, I’ll also show you the plot rendering
so we can replicate the Voila functionality fully.

First, this is the rest of the results function for app.pyif we want to make a UI
endpoint. It’s not much more- we just create our plot (same function as Voila),
and run render_templatas we did for index.htmlwith some different arguments.

REST API

If we’re not making a UI endpoint, then we can add this to our result function to
complete the script.

...
variables['predicted_earn'] = pred_final

return jsonify(variables)

@app.route

result.html index.html

app.py

render_template index.html

For the GitHub Gist, click here.

23

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/4d7bd771785cd33396c499e22478cfeb

Our results.html code will receive all this stuff and display it for us. We can also pass all
the model inputs if we want, and show them so the user sees all the values they provided
- this is just optional.

For the rendering, then, all the results page really needs to have as far as HTML is this. It
uses pred_final and graphJSOto print the prediction and also print the plot. We’re using a
little Javascript to print the plot, of course, but if you’d rather not get into that you can
easily leave it out.y leave it out.

results.html

pred_final graphJSON

Deploy

Now we have two applications: API and web app. Deploying them is actually just
the same! Inside our app.py script/s we’ll add one last bit (don’t forget the port
and host!):

if __name__ == "__main__":
app.run(host='0.0.0.0', port=8000)

This lets us use the command to run our application.

For the GitHub Gist, click here.

24

python app.py

How to Deploy Your Machine Learning Models

https://gist.github.com/skirmer/416c0cbb100b326b051fcf729fac4a29

Now you are ready! Save, click the green Start arrow, and your deployment will
start up.

This form will accept your viewer’s inputs, and then it will either return JSON
results, if you’re making an API, or will take them to your results page.

26

How to Deploy Your Machine Learning Models

See it in Action!

If you have a Saturn Cloud account,
you can the Flask web application
running live now or see the Flask
REST API.

Conclusion

With that, you have deployed a model. This technique can work for lots of different
types of models, and if you’d like to try it on Saturn Cloud, you can do so here. Check
out our getting started documentation for more guides, too.

27

How to Deploy Your Machine Learning Models

https://saturncloud.io/docs/getting-started/signing_up/
https://app.community.saturnenterprise.io/auth/login?next=https%3A%2F%2Fflask-webapp-deploy.community.saturnenterprise.io%2F
https://app.community.saturnenterprise.io/auth/login?next=https%3A%2F%2Fflask-demo-api-deploy.community.saturnenterprise.io%2F
https://accounts.community.saturnenterprise.io/auth/signup
https://saturncloud.io/docs/

With that, you have deployed a model! This technique can work for many
different types of models, as well as other data science and machine
learning insights you might want to share with others.

Delivering value through productionizing models is an incredibly
powerful aspect of machine learning in business and other contexts, and
it's easier than ever to do it, thanks to tools like the ones you've learned
here.

Voilà webapp
Flask web app
Flask API

Saturn Cloud is eager to help you turn your models into insights. To do
that, we offer one-click deployments, as well as access to as much or as
little, compute as you require, simple collaboration tools, and familiar,
easy development environments. The deployments we've built in this
guide are running on Saturn Cloud right now, and you can view them if
you have a Saturn Cloud Hosted account!

If Saturn Cloud might be right for your needs, check out our
documentation and learn how to get started in 10 minutes or less,
with clear and accessible guides and how-tos. We look forward to
seeing what exciting projects you build on Saturn Cloud!

About Saturn Cloud

Saturn Cloud is a free, end-to-end data science and machine
learning platform allowing data scientists to scale their Python
projects with Dask in the cloud and more.

Saturn Cloud 2021

How to Deploy Your Machine Learning Models

https://saturncloud.io/
https://www.linkedin.com/company/saturn-cloud/mycompany/?viewAsMember=true
https://twitter.com/saturn_cloud
https://www.facebook.com/saturncloud1/
https://app.community.saturnenterprise.io/auth/login?next=https%3A%2F%2Fvoila-webapp-deploy.community.saturnenterprise.io%2F
https://app.community.saturnenterprise.io/auth/login?next=https://flask-webapp-deploy.community.saturnenterprise.io/
https://app.community.saturnenterprise.io/auth/login?next=https://flask-demo-api-deploy.community.saturnenterprise.io/
https://saturncloud.io/docs/getting-started/

Scalable Python with GPUs & Dask
Cloud-hosted Jupyter Notebooks
Sharable work & dashboards
Familiar, easy development
environments

ALL-IN-ONE SOLUTION

One-click deployments
Access to as much compute needed
Simple collaboration tools
Connect from existing cloud-hosted
services

Your Data Science
Best Friend

Join thousands of data scientists
creating faster and more scalable

Python projects and more on
Saturn Cloud

START FOR FREE

Trusted by

And More

