
DaskCheatsheet

saturncloud.io - info@saturncloud.io - updated 2021-07-26

Presented by

Dask is a Python framework for distributed computing. With Dask,
you can easily have code run in parallel over multiple threads
or a network of connected machines. Dask works by having the
machine that calls it (the client) use the Dask libraries to pass the
data and commands to a scheduler, which then in turn distributes
the tasks to workers. The workers can be threads on the same
machine as the client, or on separate machines entirely.

What is Dask?
User Python

Code
Dask Worker

Dask Worker

Dask Worker

Dask SchedulerDask Library

Data collections are Dask data types that can swap in for standard libraries to run
on a distributed cluster. They are designed to mimic popular Python libraries.

Data Collections

DASK DATAFRAME

import dask.dataframe as dd
df = dd.read_csv('pet_data.csv')
df.groupby(df['breed'])['age'] \
 .mean().compute()

import pandas as pd
df = dd.read_csv('pet_data.csv')
df.groupby(df['breed'])['age'].mean()

Dask DataFrames have equivalent
functions for most pandas operations.
This allows you to group, summarize,
and more with a parallel backend.

pandas

Dask DataFrame

DASK ARRAY
Dask Arrays are meant to mimic the
functionality of NumPy arrays using
a distributed backend (and common
NumPy functions).

import numpy as np
import dask.array as da
x = np.array(range(1000))
x = da.from_array(x, chunks = 10)
da.sin(x).compute()

import numpy as np
x = np.array(range(1000))
np.sin(x)

NumPy

Dask Array

Dask DataFrame

A Dask DataFrame splits data into multiple pan-
das DataFrames on the backend.

pandas DataFrame

pandas DataFrame

pandas DataFrame
=

A Dask Array is a multi-dimensional collection of
NumPy arrays

Dask Array

NumPy
array= NumPy
array

NumPy
array

NumPy
array

DASK BAG
Dask Bags are used for
taking a collection of Python
objects and processing them
in parallel. You can apply
functions, filter the collec-
tion, and group and combine.

import dask.bag as db
pets = choices(["cat", "dog"], k=50)
bag = db.from_sequence(pets)
bag.map(lambda x: x.upper()).frequencies() \
 .topk(2).compute()

pets = choices(["cat","dog","rat"], k=50)
pets = map(lambda x: x.upper(), pets)
counts = Counter(pets).items()
top_2 = sorted(counts, key=lambda x: x[1])[-2:]

Dask Bag
Dask Bag =

Python Object
Python Object
Python Object

A Dask Bag is an unordered sequence
of arbitrary Python objects.

Task Scheduling
Dask works by creating a task graph, a directed acyclic
graph where each node is a Python function (tasks) and
edges are when one task's output is another's input.

Base Python

SINGLE MACHINE SCHEDULERS

synchronous - Uses a single thread (no parallelization)
threads - Computations done on local threads. Only
parallelizes non-Python backend code
processes - Computations spread over local processes.
Parallelized Python on single machine

import dask
dask.config.set(scheduler='synchronous')

Set the scheduler using dask.config.set

MULTI-MACHINE SCHEDULERS

The Dask distributed scheduler is more powerful but also
complicated. It is required for using Dask over multiple
machines, as well as for some functionality like Dask Fu-
tures. The distributed scheduler can be used locally if you
want the additional functionality without the cluster.

from dask.distributed import Client
client = Client()

Run over multiple machines using dask.distributed

Source: Dask Community GitHub

In addition to using the helpful data collections, users may
also want to directly parallelize their code themselves. Dask
has multiple methods for taking Python code and running it
in a distributed manner:

Glossary
Client - the machine calling Dask
Cluster - set of connected machines to execute work
Dask Collection - a data type that uses Dask on the backend

Lazy - code that only runs when the result is needed
Local - the code running on the client
Scheduler - program coordinates executing task graph
Task - unit of Python code to execute

Task graph - network of how tasks relate
Worker - machine in the distributed cluster that
executes tasks

Dask Delayed allows you to take arbitrary functions and exe-
cute them in a non-sequential order. By converting functions
to delayed versions, they will instead be executed lazily.

Parallelizing Python Code

DASK DELAYED

@dask.delayed
def plus_5(x):
 return x + 5
plus_5(plus_5(10)).compute()

def times_2(x):
 return x * 2
a = dask.delayed(times_2)(10)
b = dask.delayed(times_2)(result)
b.compute() #returns 40

Use dask.delayed as a
wrapper around a function
to make it the delayed
version (which returns a
Delayed object). To get the
value, use .compute().

For convenience, you can
use the @dask.delayed
decorator above a function.

DASK FUTURES
Dask Futures builds on the concurrent.futures module from
Python. This allows you to run multiple tasks concurrently
in Python, but unlike Dask Delayed the computations are
immediate, rather than lazy.

from dask.distributed import Client
client = Client()
def sub_3(x):
 return x - 3
a = client.submit(sub_3, 12
a.result() #blocks until result
b = client.map(sub_3, range(10,20))
client.gather(b)#list to results

Submit individual tasks
using .submit(), or
apply a function using
.map(). These return
future objects or a list of
future objects, respec-
tively. To get the results,
you can use .result()
or .gather() for a list of
futures.

saturncloud.io - info@saturncloud.io - updated 2021-07-26

Use Dask on Saturn CloudUse Dask Locally Use Dask on a Cluster
To quickly get started and develop, Dask can be run with a
distributed cluster on the same machine as the client. Dask can
parallelize across the different cores of the machine.

By default Dask uses a single local scheduler, so just install the
package and start running. Certain tasks benefit from using the
newer distributed scheduler locally, which can be called from
dask.distributed

Rather than having to set up and manage Dask cluster yourself,
you can use Saturn Cloud to get started in seconds. The Saturn
Cloud Hosted Free plan gives you 3 hours of free Dask usage a
month (with GPUs!), and both paid and enterprise plans are also
available. Go to saturncloud.io/signup to get started.

Saturn Cloud
Jupyter Server

Saturn Cloud
Dask Cluster

Local resource Saturn Cloud
Dask Cluster

Methods for using Dask on Saturn Cloud
Using the local Dask environment can be a great way to
write and debug code before shifting over to a multi-ma-
chine system.

If you'd like to run Dask on a cluster of workers (and don't want to
have a system setup for you with cloud tools like Saturn Cloud),
Dask provides a number of methods for creating clusters yourself

Kubernetes With Kubernetes you can easily manage a
Dask cluster, while having other services on
the same cluster.

YARN Dask-Yarn can be used to deploy on YARN clusters,
which is especially useful if you already have one
from Spark or Hadoop

Command line You can set up a Dask cluster manually by
calling dask-scheduler on a machine, and
then dask-worker on each machine you'd
like to be a worker (and registering it to the
scheduler)

Machine Learning with Dask

DASK-ML

XGBOOST

LIGHTGBM

The popular machine learning method XGBoost has built-in support for Dask, allow-
ing the model to be trained across multiple workers concurrently.

Dask-ML is a library of helper functions for using Dask for machine learning. It con-
tains functions for common ML algorithms like linear regressions, as well as paralleliz-
able tasks like crossvalidation and hyperparameter tuning.

With Dask and XGBoost, first create a special Dask version of
the data (here X and y are Dask Arrays or Dask DataFrames).
Also pass the Dask client. Then use the special XGBoost train-
ing function for Dask again passing the Dask client to it.

dtrain = xgb.dask.DaskDMatrix(client, X, y)
output = xgb.dask.train(client,params,detrain,…)

Dask is well-suited for machine learning. However, most common machine learning libraries do not native-
ly support training on data distributed across workers, and so special libraries must be used:

dask_ml.model_selection.GridSearchCV()
dask_ml.model_selection.RandomizedSearchCV()

Dask-ML supplies drop-in replacements for Scikit-Learn functions
for hyperparameter search. This allows you to test different com-
binations of parameters much more quickly than with Scikit-Learn
since the backed is parallelized.

This is a gradient-boosting tree-based ML framework, with a focus on faster training
speeds and a lower memory usage. LightGBM has built in support for distributed train-
ing with Dask.

dX = dask.array.from_array(X, chunks=(100, 50))
dy = dask.array.from_array(y, chunks=(100,))
dask_model = lightgbm.DaskLGBMClassifier(n_estimators=10)
dask_model.fit(dX, dy)

Here LightGBM is being used for the DaskLGB-
MClassifier model, to classify Dask arrays. This
allows the model to be trained on data spread
over multiple workers.

PYTORCH

Dask with GPUs

RAPIDS allows for using modern machine learning methods directly on GPUs,
and is compatible with Dask for situations with large datasets

RAPIDS

At its core, Dask doesn't distinguish between CPU and GPU computations. Dask can run any-
thing so long as your workers have the correct libraries and hardware. That said, there are a
number of frameworks well suited for using Dask with GPUs.

import dask_cudf
from dask.distributed import Client
from cuml.dask.ensemble import
RandomForestClassifier
taxi = dask_cudf.read_csv("taxi.csv")
X = taxi[["puloc", "doloc", "count"]]
y = (taxi["tip"] > 1).astype("int32")
X, y = client.persist([X, y])
_ = wait([X, y])
rfc = RandomForestClassifier(n_estimators=100)
_ = rfc.fit(X, y)

By loading data using cudf, it will be stored
for use by a GPU instead of a CPU, while still
being compatible with Dask. From there, the
cuml random forest algorithm which uses
the GPU can be called. This workflow of using
multiple workers with GPUs can be a far
faster replacement replacement for ML on a
single CPU

from torch.nn.parallel \
 import DistributedDataParallel as DDP
def train():
 model = Model()
 model = model.to(torch.device(0))
 model = DDP(model)
 ...
futures = dispatch.run(client, train)

Using the DDP library from PyTorch a single model
can be trained across multiple workers and GPUs.
Dask can be used by having each Dask worker run
a training function (here called train) to train the
model on each GPU. The DDP library coordinates
parameter fitting between the models. For more
information watch this talk (scld.io/dasksummitg-
pus) and check out the Saturn Cloud DDP helper li-
brary (github.com/saturncloud/dask-pytorch-ddp).

You can use Dask with PyTorch, either to train many different models at once
using Dask workers, or by having all the workers coordinate training the same
model

conda install dask

from dask.distributed import Client
client = Client()

Install the Dask package from conda

Use the distributed scheduler
by creating a Dask client
object with it

To use Dask, create a new Jupyter server and attach
a Dask cluster to it. Once you've done that your Dask
commands will execute on the external Dask cluster
rather than the Jupyter server.

You can either connect to the Saturn
Cloud Dask Cluster through the associ-
ated Jupyter Server, or you can connect
directly to the Dask Cluster through a
local resource like a laptop, or even a
different machine in the cloud.

helm repo add dask https://helm.dask.org/
helm repo update
helm install my-dask dask/dask

dask-scheduler
> Scheduler at: tcp://192.0.0.100:8786
dask-worker tcp://192.0.0.100:8786

